Material properties affect evolution’s ability to exploit morphological computation in growing soft-bodied creatures
نویسندگان
چکیده
The concept of morphological computation holds that the body of an agent can, under certain circumstances, exploit the interaction with the environment to achieve useful behavior, potentially reducing the computational burden of the brain/controller. The conditions under which such phenomenon arises are, however, unclear. We hypothesize that morphological computation will be facilitated by body plans with appropriate geometric, material, and growth properties, while it will be hindered by other body plans in which one or more of these three properties is not well suited to the task. We test this by evolving the geometries and growth processes of soft robots, with either manually-set softer or stiffer material properties. Results support our hypothesis: we find that for the task investigated, evolved softer robots achieve better performances with simpler growth processes than evolved stiffer ones. We hold that the softer robots succeed because they are better able to exploit morphological computation. This four-way interaction among geometry, growth, material properties and morphological computation is but one example phenomenon that can be investigated using the system here introduced, that could enable future studies on the evolution and development of generic soft-bodied creatures.
منابع مشابه
Evolutionary Developmental Soft Robotics As a Framework to Study Intelligence and Adaptive Behavior in Animals and Plants
In this paper, a comprehensive methodology and simulation framework will be reviewed, designed in order to study the emergence of adaptive and intelligent behavior in generic soft-bodied creatures. By incorporating artificial evolutionary and developmental processes, the system allows to evolve complete creatures (brain, body, developmental properties, sensory, control system, etc.) for differe...
متن کاملSoft-Body Muscles for Evolved Virtual Creatures: The Next Step on a Bio-Mimetic Path to Meaningful Morphological Complexity
In the past, evolved virtual creatures (EVCs) have been developed with rigid, articulated bodies, and with soft bodies, but never before with a combination of the two. In nature, however, creatures combining a rigid skeleton and non-rigid muscles are some of the most complex and successful examples of life on earth. Now, for the first time, creatures with fully evolved rigid-body skeletons and ...
متن کاملSome Properties of $(1,2)^*$-Soft\ b-Connected Spaces
In this paper we introduce the concept of $(1,2)^*$-sb-separated sets and $(1,2)^*$-soft b-connected spaces and prove some properties related to these break topics. Also we disscused the properties of $(1,2)^*$-soft b- compactness in soft bitopological space
متن کاملEvolving soft locomotion in aquatic and terrestrial environments: effects of material properties and environmental transitions
<250 words): Designing soft robots poses considerable challenges: automated design approaches may be particularly appealing in this field, as they promise to optimize complex multi-material machines with very little or no human intervention. Evolutionary soft robotics is concerned with the application of optimization algorithms inspired by natural evolution in order to let soft robots (both mor...
متن کاملEmergence of Self-Organized Amoeboid Movement in a Multi-Agent Approximation of Physarum polycephalum
The giant single-celled slime mould Physarum polycephalum exhibits complex morphological adaptation and amoeboid movement as it forages for food and may be seen as a minimal example of complex robotic behaviour. Swarm computation has previously been used to explore how spatio-temporal complexity can emerge from, and be distributed within, simple component parts and their interactions. Using a p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016